\(\int (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx\) [366]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 442 \[ \int (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (35 a A b+23 a^2 B+9 b^2 B\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b d}+\frac {2 \sqrt {a+b} \left (a^2 b (45 A-23 B)-a b^2 (35 A-17 B)+b^3 (5 A-9 B)+15 a^3 B\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b d}-\frac {2 a^2 A \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 b (5 A b+8 a B) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b B (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d} \]

[Out]

-2/15*(a-b)*(35*A*a*b+23*B*a^2+9*B*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^
(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+2/15*(a^2*b*(45*A-23*B)-
a*b^2*(35*A-17*B)+b^3*(5*A-9*B)+15*B*a^3)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b)
)^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d-2*a^2*A*cot(d*x+c)*Ell
ipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(
1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d+2/5*b*B*(a+b*sec(d*x+c))^(3/2)*tan(d*x+c)/d+2/15*b*(5*A*b+8*B*a)*(a+b*s
ec(d*x+c))^(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 442, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {4003, 4141, 4143, 4006, 3869, 3917, 4089} \[ \int (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (23 a^2 B+35 a A b+9 b^2 B\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b d}-\frac {2 a^2 A \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}+\frac {2 \sqrt {a+b} \left (15 a^3 B+a^2 b (45 A-23 B)-a b^2 (35 A-17 B)+b^3 (5 A-9 B)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{15 b d}+\frac {2 b (8 a B+5 A b) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{15 d}+\frac {2 b B \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 d} \]

[In]

Int[(a + b*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]),x]

[Out]

(-2*(a - b)*Sqrt[a + b]*(35*a*A*b + 23*a^2*B + 9*b^2*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]
/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/
(15*b*d) + (2*Sqrt[a + b]*(a^2*b*(45*A - 23*B) - a*b^2*(35*A - 17*B) + b^3*(5*A - 9*B) + 15*a^3*B)*Cot[c + d*x
]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)
]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(15*b*d) - (2*a^2*A*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a,
ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*
(1 + Sec[c + d*x]))/(a - b))])/d + (2*b*(5*A*b + 8*a*B)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(15*d) + (2*b*B
*(a + b*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(5*d)

Rule 3869

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4003

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[(-b)
*d*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m - 1)/(f*m)), x] + Dist[1/m, Int[(a + b*Csc[e + f*x])^(m - 2)*Simp[a^2
*c*m + (b^2*d*(m - 1) + 2*a*b*c*m + a^2*d*m)*Csc[e + f*x] + b*(b*c*m + a*d*(2*m - 1))*Csc[e + f*x]^2, x], x],
x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 1] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 4006

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4141

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_.), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), I
nt[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*A*(m + 1) + ((A*b + a*B)*(m + 1) + b*C*m)*Csc[e + f*x] + (b*B*(m + 1) +
 a*C*m)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && IGtQ[2*m, 0]

Rule 4143

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[Csc[e + f*x
]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b B (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {2}{5} \int \sqrt {a+b \sec (c+d x)} \left (\frac {5 a^2 A}{2}+\frac {1}{2} \left (10 a A b+5 a^2 B+3 b^2 B\right ) \sec (c+d x)+\frac {1}{2} b (5 A b+8 a B) \sec ^2(c+d x)\right ) \, dx \\ & = \frac {2 b (5 A b+8 a B) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b B (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {4}{15} \int \frac {\frac {15 a^3 A}{4}+\frac {1}{4} \left (45 a^2 A b+5 A b^3+15 a^3 B+17 a b^2 B\right ) \sec (c+d x)+\frac {1}{4} b \left (35 a A b+23 a^2 B+9 b^2 B\right ) \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 b (5 A b+8 a B) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b B (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {4}{15} \int \frac {\frac {15 a^3 A}{4}+\left (-\frac {1}{4} b \left (35 a A b+23 a^2 B+9 b^2 B\right )+\frac {1}{4} \left (45 a^2 A b+5 A b^3+15 a^3 B+17 a b^2 B\right )\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{15} \left (b \left (35 a A b+23 a^2 B+9 b^2 B\right )\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = -\frac {2 (a-b) \sqrt {a+b} \left (35 a A b+23 a^2 B+9 b^2 B\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b d}+\frac {2 b (5 A b+8 a B) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b B (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\left (a^3 A\right ) \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{15} \left (a^2 b (45 A-23 B)-a b^2 (35 A-17 B)+b^3 (5 A-9 B)+15 a^3 B\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = -\frac {2 (a-b) \sqrt {a+b} \left (35 a A b+23 a^2 B+9 b^2 B\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b d}+\frac {2 \sqrt {a+b} \left (a^2 b (45 A-23 B)-a b^2 (35 A-17 B)+b^3 (5 A-9 B)+15 a^3 B\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b d}-\frac {2 a^2 A \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 b (5 A b+8 a B) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b B (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(7138\) vs. \(2(442)=884\).

Time = 27.90 (sec) , antiderivative size = 7138, normalized size of antiderivative = 16.15 \[ \int (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\text {Result too large to show} \]

[In]

Integrate[(a + b*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]),x]

[Out]

Result too large to show

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(4160\) vs. \(2(403)=806\).

Time = 32.27 (sec) , antiderivative size = 4161, normalized size of antiderivative = 9.41

method result size
parts \(\text {Expression too large to display}\) \(4161\)
default \(\text {Expression too large to display}\) \(4180\)

[In]

int((a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

2/3*A/d*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(8*a*b^2*sin(d*x+c)+3*(cos(d*x+c)/(cos(d*x+c)+1
))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*
a^3*cos(d*x+c)^2-6*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^2-12*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)
/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c
)+7*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(
d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b+7*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*
x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2-9*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(
a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b-7*Ellipti
cF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos
(d*x+c)+1))^(1/2)*a*b^2-2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b)
)^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)^2+b^
3*sin(d*x+c)-6*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3+tan(d*x+c)*b^3-18*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b)
)^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)-14
*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x
+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)-9*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+
a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2-7*EllipticF(cot(d*x+c
)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^
(1/2)*a*b^2*cos(d*x+c)^2+7*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*E
llipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)^2+7*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)
+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*
x+c)^2+14*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+
c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)+14*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)+6*(cos(d*x+c)
/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/
(a+b))^(1/2))*a^3*cos(d*x+c)+3*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1)
)^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2
))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3+a*b^2*cos(d*x+c)*sin(
d*x+c)+7*a^2*b*cos(d*x+c)*sin(d*x+c))+2/15*B/d*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(14*a*b^
2*sin(d*x+c)+34*a^2*b*sin(d*x+c)-15*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^2+23*EllipticE(cot(d*x+c)-csc(d*x+
c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*
b+9*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(
d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2+23*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+
1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^2+9*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3
*cos(d*x+c)^2-23*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b-17*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+
b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2-18*EllipticF(cot(d*x+c)-csc(
d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*
b^3*cos(d*x+c)+46*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(
cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)-9*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2
))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)^2+18*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(
(a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)+9*b^3*sin(d*x+c)+3*tan(d*x+c)*b^3+3*b^3*tan(d*x+c)*sec(d*x+c)+14*a*b^2*tan(
d*x+c)+23*a^3*cos(d*x+c)*sin(d*x+c)-46*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(
d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)-34*EllipticF(cot(d*x+c)-csc(d
*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a
*b^2*cos(d*x+c)-23*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2-17*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b)
)^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2+
23*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(
d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)^2+9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(
cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^2+46*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+
b))^(1/2))*a^2*b*cos(d*x+c)+18*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/
2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)-30*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*cos(d
*x+c)-15*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3-9*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos
(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3+9*a*b^2*cos(d*x+c)*sin(d*x+c)+23*Elliptic
E(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(
d*x+c)+1))^(1/2)*a^3+9*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x
+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3+11*a^2*b*cos(d*x+c)*sin(d*x+c))

Fricas [F]

\[ \int (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*b^2*sec(d*x + c)^3 + A*a^2 + (2*B*a*b + A*b^2)*sec(d*x + c)^2 + (B*a^2 + 2*A*a*b)*sec(d*x + c))*sq
rt(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\int \left (A + B \sec {\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}\, dx \]

[In]

integrate((a+b*sec(d*x+c))**(5/2)*(A+B*sec(d*x+c)),x)

[Out]

Integral((A + B*sec(c + d*x))*(a + b*sec(c + d*x))**(5/2), x)

Maxima [F]

\[ \int (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(5/2), x)

Giac [F]

\[ \int (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\int \left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

[In]

int((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(5/2),x)

[Out]

int((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(5/2), x)